Mutation testing

About the idea and constraints
INn commercial use

Wojtek

00

Buzzword or
salvation?

. @
\Ya

2

»~Mutation testing reveals »Systems tested with mutation ,Projects using mutation , The tests written with the
weak spots in test suites, have shown to be 25% more testing report a 20% decrease TDD+M approach achieve 17%
improving error detection by resilient to unforeseen real- in post-release defects.”3 better statement coverage
30%.” 1 world scenarios.”? and 23% better mutation

coverage than the tests
written with the TDD
approach.”*

1. A. J. Offutt, "Mutation Testing and the Use of Software Test Data Sets”
2. L. Madeyski, "Effectiveness of Mutation Testing: Experimental Evaluation with Real Software” (PWr)
3. Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation Testing”
4. A. Roman and M. Mnich, , Test-driven development with mutation testing — an experimental study” (UJ)

O1

Introduction to
mutation testing

Mutation

-
O

Mutat

,Jnexpected changeor
modification ina given
structure/system/pattern,
that canlead to new
behaviors.”

00
public class Rabbit {

public static boolean isHungry(int foodEaten) {
return foodEaten <= 3;
}

00
public class RabbitTest {

@Test
public void testIsHungryWhenSatietyLevelIsThree() {

var rabbit = new Rabbit();
int foodEaten = 3;

assertTrue(rabbit.isHungry(foodEaten));

After a mutation...

public class Rabbit {

public static boolean isHungry(int foodEaten) {

THE MORE
| EAT, | EAT,,

THE HUNGIRIER
| GET | GET!

return foodEaten 3

b
L O N

public class RabbitTest {

@Test
public void testIsHungryWhenSatietylLevelIsThree() {

var rabbit = new Rabbit();
int foodEaten = 3;

assertTrue(rabbit.isHungry(foodEaten));

How is mutation
defined within the
application lifecycle?

The more code
you write, the
more new bugs
YOu create.

Zhang, Hongyu. (2009). An
Investigation of the Relationships
between Lines of Code and Defects.

A mutationis a
simulated potencial
programmer mistake.

It doesn't concern us -
but are we sure”?

def isExpired(reservation: WaitingReservation): Boolean = {
val currentTimeInMillis = new Date().getTime
val reservationOpenTimeInMillis = reservation.date.getTime
val expirationTimeInMillis = minExpirationTime.toMillis

reservationOpenTimeInMillis + expirationTimeInMillis <= currentTimeInMillis

It doesn't concern us -
but are we sure”?

def isExpired(reservation: WaitingReservation): Boolean = {
val currentTimeInMillis = new Date().getTime
val reservationOpenTimeInMillis = reservation.date.getTime
val expirationTimeInMillis = minExpirationTime.toMillis

reservationOpenTimeInMillis + expiPatiunTimeInMillis)x;:currentTimeInHillis

>

Operators mutants

1. Arithmetic
Operators
Mutations: for
instance,
changing + to -
,*to/,and
vice versa.

2. Logical
Operators
Mutations: for
instance,
replacing &&
with &,
changing==to
=, < to >=,
etc.

3. Statement
Mutations:
deletinga
particular
statement,
replacingone
statement
with another.

4. Variable
Mutations:
replacingone
variable with
another,
changing the
initial value of
avariable.

5. Conditional
Mutations:
changing
boundary
conditions,
e.g., <to<s,
invertingthe
resultofa
conditional.

6.
Function/Met
hod Call
Mutations:
deletinga
function/meth
od call, change
the order of
function/meth
od calls.

7. Return
Value
Mutations:
alteringthe
return value of
a function or
method,
removingor
nullifying the
returnvalue.

And...

... many more!

Operators mutants

* In general: replace any operator with its opposite

As many operators as
you can define.

Terminology

* Mutation, mutant
* Mutant survival, killing a mutant

 Mutation score = killed mutants / all mutants

02

Mutation testing
for Java and Scala

Popular Java libraries

e PIT (Pitest)
* Mulava

e Javalanche
e Jester

Scala?

Scala?

 Stryker4s
* PIT (Pitest) - why not:

Henry Coles <henry.coles@googlemail.com> S
Do: Ty Sr, 26.07.2023 23:12

DW: hello@henrycoles.com

Unfortunately PIT's approach to mutation testing is not a good fit for Scala. PIT mutates jvm
bytecode, which for Java and Kotlin maps back to the source in a fairly straightforward way. For
scala, the mapping is much more complex. When I last looked at this (quite some time ago) the
bytecode constructs the compiler generates for each language feature also changed greatly with
each scala release.

Pitest

e Java, Kotlin and... Scala (?)

* Gradle, Maven, Ant, command line
* allows configuring multiple settings
* mutation optimizations

Pitest

* https://github.com/wszlosek/mutation-testing-
xref.git

https://github.com/wszlosek/mutation-testing-xref.git
https://github.com/wszlosek/mutation-testing-xref.git

03

Mutation testing
in the commercial
context

Why don't most*
companies use
mutation testing?

Well-maintained unit
tests (must have)

Optimization, Stupid!

Let:
* n = #tests
* m =#mutants_types

* k(m) = #places_suitable_for_mutation_m

n *m * k(m) [operations] (brute-force)

U

EXECUTION TIME IN MINUTES |BRUTE FORCE |PIT (1 THREAD)
Assert] 1866.67 14.15
Joda-time 666.67 11.65

10000
:E.‘
©
3
2
£
£
S 1000
g
3
£
£
£ 100
Q
E
=
Q
3
2
w 10

Brute force vs PIT - mutation testing execution time

Assert)

Joda-time

m Brute force
m PIT (1 thread)

Methods of
optimization include:

* randomly picking mutations
e utilizing results from previous tests
* mutating only the most important parts of the code

And, of course!

.
—

So, will mutation
testing ever become a
popular practice in
many companies?

Questions?

	Slajd 1: Mutation testing
	Slajd 2: 00
	Slajd 3
	Slajd 4: 01
	Slajd 5: Mutation
	Slajd 6: Mutation
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11: How is mutation defined within the application lifecycle?
	Slajd 12: Zhang, Hongyu. (2009). An Investigation of the Relationships between Lines of Code and Defects.
	Slajd 13: A mutation is a simulated potencial programmer mistake.
	Slajd 14: It doesn't concern us - but are we sure?
	Slajd 15: It doesn't concern us - but are we sure?
	Slajd 16: Operators mutants
	Slajd 17: And…
	Slajd 18: Operators mutants
	Slajd 19: As many operators as you can define.
	Slajd 20: Terminology
	Slajd 21: 02
	Slajd 22: Popular Java libraries
	Slajd 23: Scala?
	Slajd 24: Scala?
	Slajd 25: Pitest
	Slajd 26: Pitest
	Slajd 27: 03
	Slajd 28: Why don't most* companies use mutation testing?
	Slajd 29: Well-maintained unit tests (must have)
	Slajd 30: Optimization, Stupid!
	Slajd 31: But…
	Slajd 32: Methods of optimization include:
	Slajd 33: And, of course!
	Slajd 34: So, will mutation testing ever become a popular practice in many companies?
	Slajd 35: Questions?

